

# SDM630MCT

СЧЕТЧИК ЭЛЕКТРОЭНЕРГИИ, МОНТИРУЕМЫЙ НА DIN-РЕЙКУ, ДЛЯ ОДНОФАЗНЫХ И ТРЕХФАЗНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ



- Измеряемые величины: кВт·ч, квар·ч, квар, кВ, кВА, мощность, частота, коэффициент мощности, Гц, дмд, В, А, полный коэффициент гармоник и т. д.
- Двунаправленное измерение (прием и передача)
- Два импульсных выхода: RS485 Modbus
- Монтаж на DIN-рейку 35 мм
- Соединение с ТТ 1/5A
- Точность класса выше 0.5S



### Введение

В настоящем документе содержатся инструкции по эксплуатации, техобслуживанию и установке. Счетчик измеряет и отображает характеристики однофазных двухпроводных (1ф2п), однофазных (раздельная фаза) трехпроводных (1ф3п), трехфазных трехпроводных (3ф3п) и трехфазных четырехпроводных (3ф4п) источников энергии, включая напряжение, частоту, ток, мощность, активную и реактивную энергию (прием и передача). Энергия измеряется в виде кВт·ч и квар·ч. Максимальное потребление тока можно вычислить за заданный период до 60 минут. Чтобы измерить энергию, счетчику требуются входы напряжения и тока в дополнение к питанию самого счетчика. Требуемые входы тока обеспечиваются через трансформаторы тока (ТТ).

Счетчик можно настроить на работу в широком диапазоне ТТ. Встроенный интерфейс предоставляет импульсные выходы и выходы RS485 Modbus RTU. Конфигурация защищена паролем.

Счетчик запитан от отдельного вспомогательного источника (перем. или пост. тока). В качестве альтернативы он может питаться от контролируемого источника (если возможно).

#### Характеристики

Измерение и отображение на экране:

- Напряжение в линии и полный коэффициент гармоник (%) всех фаз
- Частота в линии
- Ток, потребление тока и текущий полный коэффициент гармоник (%) всех фаз
- Мощность, максимальное потребление мощности и коэффициент мощности
- Активная энергия (прием и передача)
- Реактивная энергия (прием и передача)

Счетчик имеет защищенные паролем экраны настройки для выполнения следующих задач:

- Изменение пароля
- Выбор системы питания 1ф2п, 1ф3п, 3ф3п, 3ф4п
- Период усреднения нагрузки
- Сброс для измерений потребления
- Длительность импульсного выхода

Два импульсных выхода показывают измерение энергии в реальном времени. Выход RS485 обеспечивает дистанционный контроль с другого дисплея или компьютера.

#### Первичный ток трансформатора тока

Счетчик можно настроить на работу с соотношением ТТ между основным и второстепенным током. Второстепенный ТТ имеет два варианта: 1A/5A.

#### Последовательный RS485 - Modbus RTU

В счетчике используется последовательный порт RS485 с протоколом Modbus RTU для дистанционного контроля.

Для настройки порта RS485 предусмотрены экраны настройки.



#### Импульсный выход

Счетчик имеет два импульсных выхода, которые записывают измеренную активную и реактивную энергию. Постоянная для активной энергии – 3200 имп/кВт·ч (зажимы 11 и 12). Ширину импульса 1 (зажимы 9 и 10) можно настроить в меню настройки.

#### Описание выхода за пределы диапазона

#### 1. Описание параметров выхода за пределы диапазона

Когда измеряемые параметры не входят в диапазон, на экране отображается 0. Когда параметры выходят за пределы диапазона, два интерфейса показываются поочередно. Первый – измеряемое значение тока, второй – с символом «-».

#### Пример:

Если напряжение вышло за пределы диапазона, оно будет отображаться на двух интерфейсах попеременно.



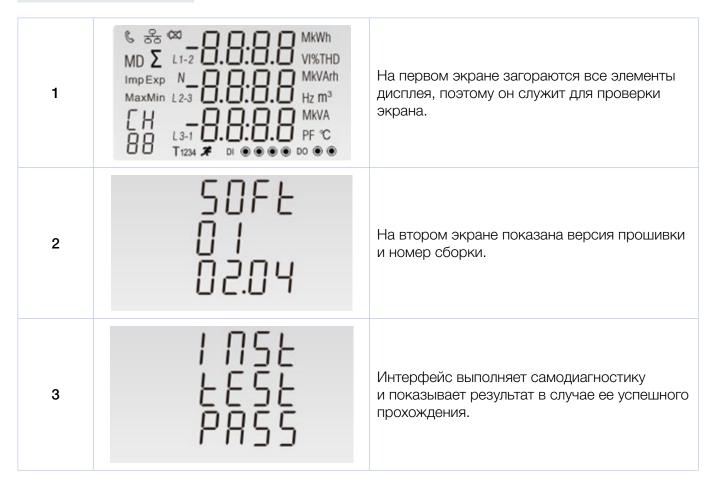
#### 2. Порог выхода недостаточного диапазона и порог выхода за пределы диапазона

Порог недостаточного диапазона:

- **А.** Напряжение <30 В (для L-N / L-L)
- **В.** Ток: <0,004A (для L-N / L-L)
- C. Мощность <1Вт(вар)(ВА) (для L-N / L-L)

Порог выхода за пределы диапазона:

- A. Напряжение:> 305 В (для L-N) Напряжение:> 530 В (для L-L)
- **В.** Ток:> 6A (для L-N / L-L)
- C. Мощность:> 1830 Вт(вар)(ВА) (для L-N) Мощность:> 3180 Вт(вар)(ВА) (для L-L)


**Примечание:** пороговые значения выхода за пределы диапазона и недостаточного диапазона – это второстепенные значения счетчика. Соотношения ТТ и ТН не включены.

#### Пример:

Если соотношение ТТ составляет 10, то недостаточный диапазон имеет место при токе менее 0,04A (=0,004\*10); превышение диапазона имеет место при токе свыше 60 A (=6\*10).



### Начальные экраны



<sup>\*</sup> Через некоторое время на экране отображается измерение активной энергии.

### Измерения

Кнопки имеют следующие функции:

| 1 | $\left[ \text{U/I}_{\text{\tiny ESC}}^{ \blacktriangleleft} \right]$ | Выбор экранов отображения напряжения и тока В режиме настройки для этого используются кнопки «влево» или «вправо».  |
|---|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 2 | M                                                                    | Выбор экранов отображения частоты и коэффициента мощности В режиме настройки для этого используется кнопка «вверх». |
| 3 | P                                                                    | Выбор экранов отображения мощности В режиме настройки для этого используется кнопка «вниз».                         |
| 4 | E 📥                                                                  | Выбор экранов отображения энергии В режиме настройки для этого используются кнопки «ввод» или «вправо».             |



### Напряжение и ток

При каждом нажатии кнопки



выбирается новый диапазон:

| 1   | 12 2 3 0.0 V                   | Напряжение между фазой и нейтралью                                        |
|-----|--------------------------------|---------------------------------------------------------------------------|
| 2   | L1-2 400.0<br>L2-3 400.0 V     | Напряжение между фазой и нейтралью                                        |
| 3   | 5.000 A<br>5.000 A<br>13 5.000 | Ток на каждой фазе                                                        |
| 4   | ° 0.058 ^                      | Ток нейтрали                                                              |
| 5-1 | L1 06.00 V%THD L2 06.00        | Полный коэффициент гармоник (%) напряжения между фазой и нейтралью (3ф4п) |
| 5-2 | L1-2                           | Полный коэффициент гармоник (%) напряжения между фазой и нейтралью (3ф3п) |



6



Полный коэффициент гармоник (%) тока для каждой фазы

### Частота, коэффициент мощности и потребление

При каждом нажатии кнопки



выбирается новый диапазон:

| 1 | Σ<br>50.00 Hz<br>1.000 PF           | Частота и коэффициент мощности (полный) |
|---|-------------------------------------|-----------------------------------------|
| 2 | L1 0.500<br>L2 0.500<br>L3 0.500 PF | Коэффициент мощности каждой фазы        |
| 3 | MD L1 6.000 A L2 6.000 A L3 6.000   | Максимальное потребление тока           |
| 4 | MD Σ 1.380 KW                       | Максимальное потребление мощности       |



## Мощность

При каждом нажатии кнопки



выбирается новый диапазон:

| 1 | L1 0.5 7.5 kW L2 0.5 7.5 L3 0.5 7.5   | Мгновенная активная мощность в кВт    |
|---|---------------------------------------|---------------------------------------|
| 2 | L1 0.995 L2 0.995 kVAr L3 0.995       | Мгновенная реактивная мощность в квар |
| 3 | L1 1.150<br>L2 1.150<br>L3 1.150 KVA  | Мгновенное значение кВА               |
| 4 | Σ 1.725 kW<br>2.985 kVAr<br>3.450 kVA | Общее значение кВт, квар, кВА         |

### Измерение энергии

При каждом нажатии кнопки



выбирается новый диапазон:



### 1. Только дисплей SDM630MCT

| 1 | Σ   | 0000 kWh              | Общая активная энергия в кВт·ч           |
|---|-----|-----------------------|------------------------------------------|
| 2 | Σ   | 0000<br>008.9 kvArh   | Общая реактивная энергия в квар·ч        |
| 3 | Imp | 0000 kWh              | Принимаемая активная энергия в кВт·ч     |
| 4 | Exp | 0000 kWh              | Передаваемая активная энергия в кВт-ч    |
| 5 | Imp | 0000<br>0044<br>kvarh | Принимаемая реактивная энергия в квар·ч  |
| 6 | Exp | 0000<br>004.5 kvarh   | Передаваемая реактивная энергия в квар∙ч |



### 2. Только дисплей SDM630MCT-2T

| 1 | Σ 0000 kWh           | Общая активная энергия в кВт·ч       |
|---|----------------------|--------------------------------------|
| 2 | 0000 kWh<br>003.4    | Общая активная энергия Т1 в кВт·ч    |
| 3 | 0000 kWh             | Общая активная энергия Т2 в кВт·ч    |
| 4 | Σ 0000<br>0089 kVArh | Общая реактивная энергия в квар·ч    |
| 5 | 0000<br>004.8 kvarh  | Общая реактивная энергия Т1 в квар·ч |
| 6 | □□□□ kVArh □□□ ⊀     | Общая реактивная энергия T2 в квар·ч |



### 3. Только дисплей SDM630MCT-MT

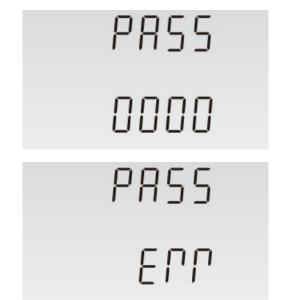
| 1 | Σ 0000 kWh        | Общая активная энергия в кВт-ч    |
|---|-------------------|-----------------------------------|
| 2 | 0000 kWh<br>003.4 | Общая активная энергия Т1 в кВт·ч |
| 3 | 0000 kWh<br>003.4 | Общая активная энергия Т2 в кВт·ч |
| 4 | 0000 kWh<br>006.8 | Общая активная энергия Т3 в кВт·ч |
| 5 | 0000 kWh          | Общая активная энергия Т4 в кВт·ч |



| 6  | Σ 0000<br>0 18.9 kVArh       | Общая реактивная энергия в квар·ч    |
|----|------------------------------|--------------------------------------|
| 7  | 0000<br>004.8 kvArh          | Общая реактивная энергия Т1 в квар·ч |
| 8  | 0000<br>004. 1 kVArh<br>T₂ ≉ | Общая реактивная энергия T2 в квар·ч |
| 9  | 0000 kVArh                   | Общая реактивная энергия T3 в квар·ч |
| 10 | T 4                          | Общая реактивная энергия Т4 в квар·ч |



### Настройка


Чтобы войти в режим настройки, нажмите кнопку



в течение 3 секунд, пока не появится экран ввода пароля.

Настройка защищена паролем, поэтому требуется ввести пароль (1000 по умолчанию).

Если введен неверный пароль, на экране отобразится следующее:  $\rightarrow$  PASS  $\rightarrow$  Err



Чтобы выйти из режима настройки, нажмите измерения.



несколько раз, пока не появится экран

### Способы входа в режим настройки

В некоторых разделах меню (например, пароль и ТТ) требуется ввод четырехзначного числа, а в других (например, система питания) требуется выбрать один из нескольких пунктов меню.

# Выбор пунктов меню

1. Используйте кнопки М А и Р , чтобы выбрать требуемый пункт меню.

При выборе не осуществляется возврат наверх списка после достижения его низа.

- 2. Нажмите 📙 🛴 , чтобы подтвердить выбор.
- **3.** Если пункт меню мигает, его можно настроить кнопками M binom u и P binom v

В противном случае имеется подпункт меню.

- 4. После выбора опции из текущего меню нажмите 📙 🧢 , чтобы подтвердить выбор.
- **5.** После завершения настройки параметров нажмите U/I , чтобы вернуться в меню верхнего уровня. Для выбора других меню можно использовать кнопки V и D V.
- **6.** По завершении настройки нажмите  $U/I_{\infty}$  несколько раз, пока не появится экран измерений.



### Процедура ввода числа

При настройке единиц на некоторых экранах требуется ввести число. В частности, при входе в раздел настройки требуется ввести пароль. Цифры настраиваются по отдельности слева направо. Используется следующий порядок:

1. Текущая настраиваемая цифра мигает и настраивается при помощи кнопок





**2.** Нажмите Е , чтобы подтвердить настройку каждой цифры. Индикатор SET появляется после настройки последней цифры.

**3.** После настройки последней цифры нажмите  $\mathbb{U}/\mathbb{I}_{\text{\tiny ESS}}$ , чтобы выйти из процедуры настройки цифр.

### Изменение пароля

| 1   | SEL<br>PRSS<br>1000                | Используйте кнопки М А и Р V, чтобы выбрать опцию смены пароля.                                                            |
|-----|------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 2-1 | 565<br>PRSS<br>1000                | Нажмите Е , чтобы открыть процедуру смены пароля. Появится экран нового пароля, где будет мигать первая цифра.             |
| 2-2 | 5EL<br>PRSS<br>1 <mark>0</mark> 00 | Используйте кнопки м и Р , чтобы настроить первую цифру и нажмите , чтобы подтвердить выбор. Будет мигать следующая цифра. |
| 2-3 | SEL<br>PRSS<br>1 100               | Повторите процедуру для оставшихся трех цифр.                                                                              |





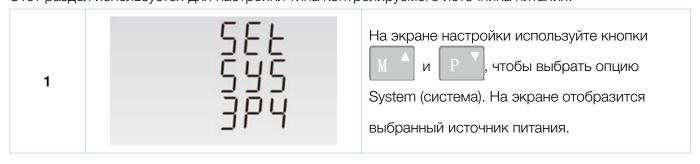
### Время интеграции DIT

Здесь задается время в минутах, за которое показания тока и мощности интегрируются для измерения максимального потребления. Возможные опции: откл., 5, 8, 10, 15,20, 30, 60 минут.


| 1   | 5E E<br>60 | Используйте кнопки М и Р , чтобы выбрать опцию DIT. На экране отобразится выбранное время интеграции. |
|-----|------------|-------------------------------------------------------------------------------------------------------|
| 2-1 | 5E         | Нажмите Е , чтобы войти в процедуру выбора. Текущий интервал времени будет мигать.                    |
| 2-2 | 5E         | Используйте кнопки м и Р , чтобы выбрать требуемое время.                                             |






### Настройка подсветки

Счетчик позволяет настроить время работы синей подсветки.



#### Система питания

Этот раздел используется для настройки типа контролируемого источника питания.

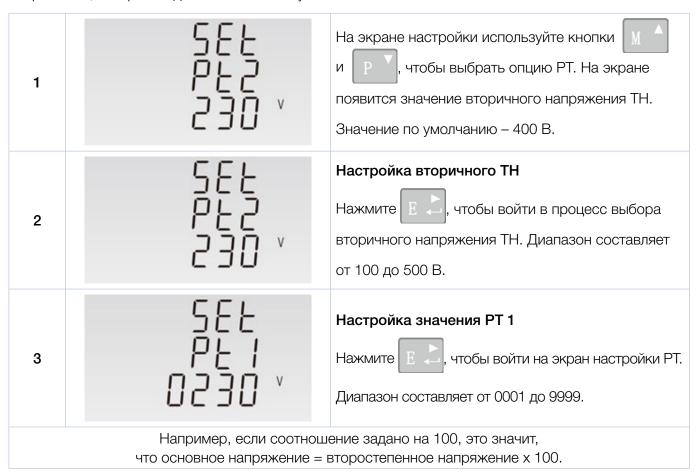




| 2                                                                                                                                         | 5EE<br>595<br>3P4 | Нажмите Е , чтобы войти в процедуру выбора. Текущий интервал времени будет мигать. Возможные опции: 0/5/10/30/60/120 минут.           |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 3-1                                                                                                                                       | 565<br>575        | Используйте кнопки $M$ и $P$ , чтобы выбрать требуемую систему: $1 \div 2(\Pi)$ , $1 \div 3(\Pi)$ , $3 \div 3(\Pi)$ , $3 \div 3(\Pi)$ |
| 3-2                                                                                                                                       | 5EE<br>595<br>1P2 | Нажмите Е , чтобы подтвердить выбор. Появится индикатор SET.                                                                          |
| Нажмите $1/1_\infty$ , чтобы выйти из процедуры выбора системы и вернуться в меню. SET исчезнет, и вы вернетесь в главное меню настройки. |                   |                                                                                                                                       |

# CT

Опция СТ позволяет задать вторичный ток трансформатора тока (СТ2 1A или 5A), который подключен к счетчику.


| 1 | 5E | На экране настройки используйте кнопки М и Р У, чтобы выбрать опцию СТ.                     |
|---|----|---------------------------------------------------------------------------------------------|
| 2 | 5E | Настройка вторичного ТТ  Нажмите Е , чтобы войти в процесс выбора вторичного тока ТТ: 5A/1A |





### PT

Опция РТ позволяет задать второстепенное напряжение (РТ2 от 100 до 500 В) трансформатора напряжения, который подключен к счетчику.

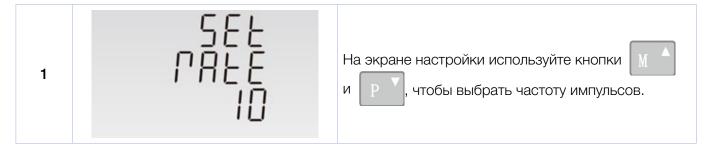


### Импульсный выход

Эта опция позволяет настроить импульсный выход. Выход можно настроить на выдачу импульса для заданного количества активной или реактивной энергии.

Этот раздел используется для настройки выхода импульса 1. Единицы: общая величина кВт·ч, общая величина квар·ч.




| 1                                                                                                                                                       | SEL<br>PLY kvArh | На экране настройки используйте кнопки М А и Р У, чтобы выбрать импульсный выход. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------|
| 2                                                                                                                                                       | SEL<br>PLY KVArh | Нажмите Е , чтобы войти в процедуру выбора.<br>Символ единицы будет мигать.       |
| 3                                                                                                                                                       | 5EL kwh          | Используйте кнопки М и Р , чтобы чтобы выбрать кВт·ч или квар·ч .                 |
| По завершении процедуры ввода нажмите $E$ , чтобы подтвердить настройку, и нажмите $U/I_{\text{\tiny EXO}}$ , чтобы вернуться в главное меню настройки. |                  |                                                                                   |

### Частота импульсов

Эта опция используется для настройки энергии, представленной каждым импульсом. Скорость можно задать на 1 импульс на  $0,01 \text{ kBt} \cdot \text{ч}/0,1 \text{ kBt} \cdot \text{ч}/10 \text{ kBt} \cdot \text{ч}/100 \text{ kBt} \cdot \text{ч}/1000 \text{ kBt} \cdot \text{ч}$ .



(Показан 1 импульс = 10 кВт·ч/квар·ч)







### Длительность импульса

Контролируемая энергия может быть активной или реактивной, а частота импульсов может быть 200, 100 или 60 мс.



(Показана частота импульсов 100 мс).





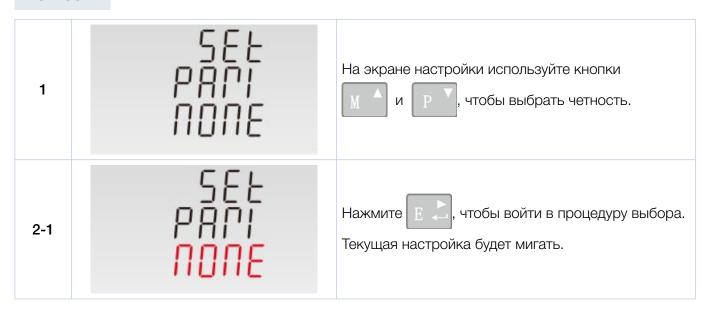
### Связь

Для связи можно использовать порт RS485 при помощи протокола Modbus RTU. Для Modbus RTU параметры выбираются на передней панели.

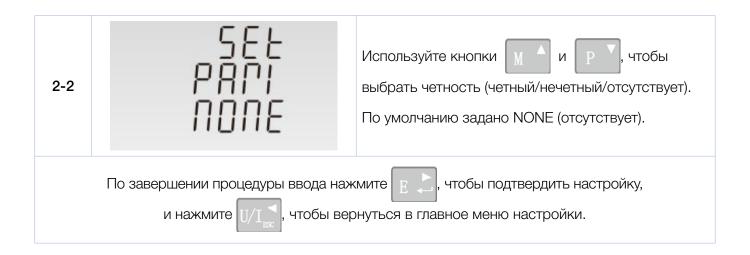
### Адрес RS485



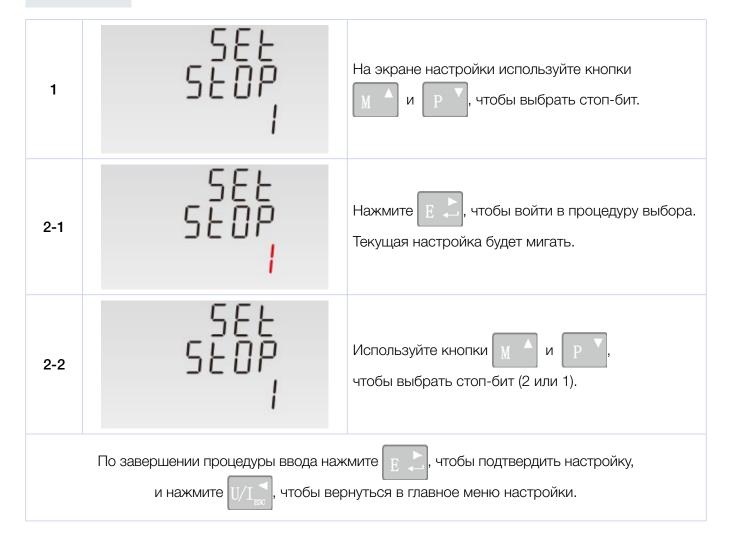
(Диапазон от 001 до 247)


| 1                                                                                                                                                                              | 56F<br>899<br>00 I  | На экране настройки используйте кнопки м м м м м м м м м м м м м м м м м м м |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------|--|
| 2-1                                                                                                                                                                            | 567<br>887<br>800   | Нажмите Е , чтобы войти в процедуру выбора. Текущая настройка будет мигать.  |  |
| 2-2                                                                                                                                                                            | 56F<br>899<br>800 1 | Используйте кнопки М А и Р У, чтобы выбрать адрес Modbus (от 001 до 247).    |  |
| По завершении процедуры ввода нажмите $\mathbb{E}$ , чтобы подтвердить настройку, и нажмите $\mathbb{U}/\mathbb{I}_{\mathbb{R}^2}$ , чтобы вернуться в главное меню настройки. |                     |                                                                              |  |




### Скорость передачи данных

| 1                                                                                                                                             | 5EL<br>68Ud<br>9.6 *              | На экране настройки используйте кнопки и руд, чтобы выбрать скорость передачи данных. |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------|--|
| 2-1                                                                                                                                           | 5EE<br>6AUd<br><mark>9.6</mark> * | Нажмите Е , чтобы войти в процедуру выбора. Текущая настройка будет мигать.           |  |
| 2-2                                                                                                                                           | 5EL<br>68Ud<br>9.6 *              | Используйте кнопки М А и Р У, чтобы выбрать скорость 2.4k. 4.8k, 9.6k, 19.2k, 38.4k   |  |
| По завершении процедуры ввода нажмите $E$ , чтобы подтвердить настройку, и нажмите $U/I_{\infty}$ , чтобы вернуться в главное меню настройки. |                                   |                                                                                       |  |


### Четность







### Стоп-биты



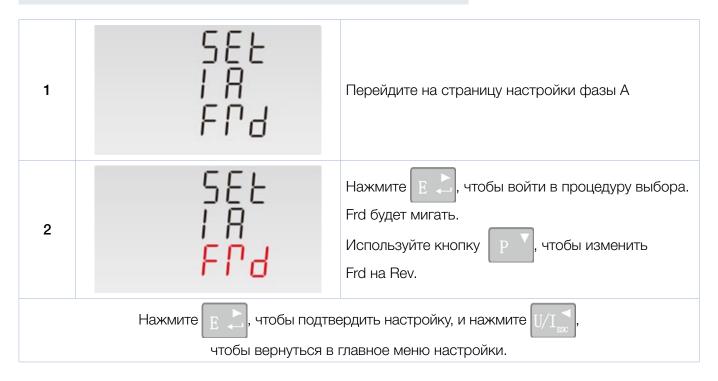
#### Примечание:

по умолчанию задана 1, и только когда четность отсутствует, стоп-бит можно поменять на 2.



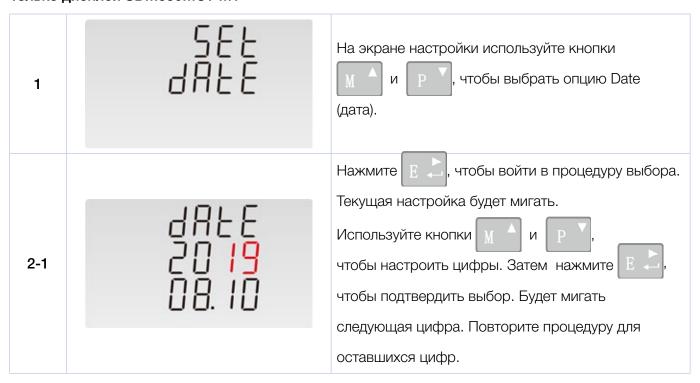
### CLR

Счетчик имеет функцию сброса значения максимального потребления тока и мощности.




### Изменение неправильно подключенных входов тока

| 1   | 5EE<br>595<br>CONE | На экране настройки используйте кнопки  м и Р , чтобы выбрать страницу «SET sys cont». |
|-----|--------------------|----------------------------------------------------------------------------------------|
| 2-1 | SEF<br>I B<br>EL9  | Нажмите Е , чтобы войти на страницу фазы А. По умолчанию выбрано Frd (вперед).         |
| 2-2 | 25 F<br>1 P<br>1 P | Используйте кнопки м и Р , чтобы перейти на страницы фаз В и С.                        |

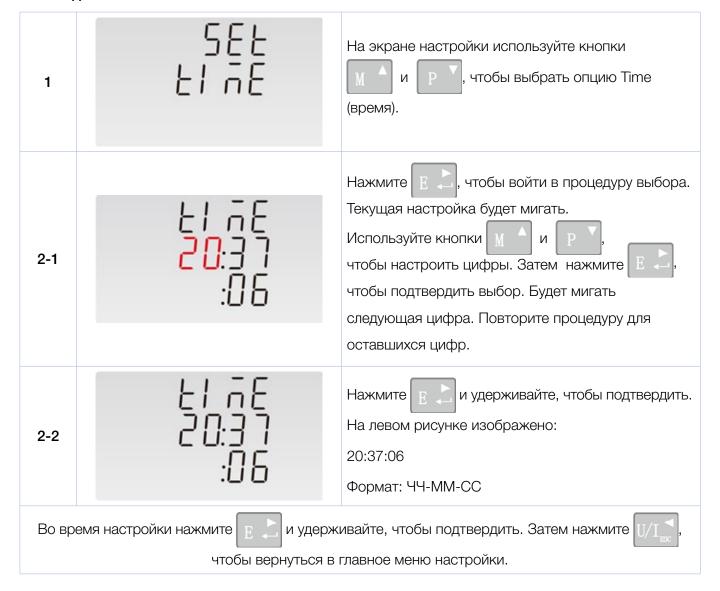



### Работа в случае неправильного подключения фазы А



#### Настройка даты

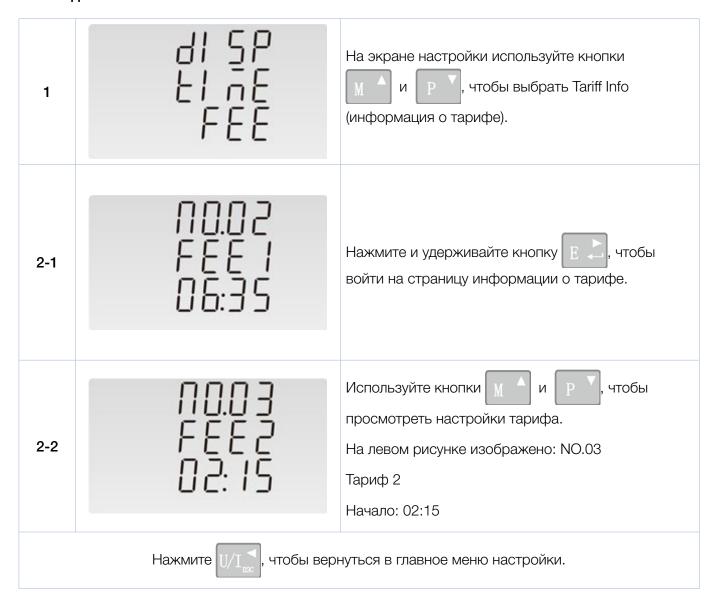
#### Только дисплей SDM630MCT-MT








### Настройка времени


### Только дисплей SDM630MCT-MT





### Информация о тарифе

#### Только дисплей SDM630MCT-MT







#### Измеряемые параметры

Счетчик может контролировать и отображать следующие параметры однофазных двухпроводных (1ф2п), однофазных (раздельная фаза) трехпроводных (1ф3п), трехфазных трехпроводных (3ф3п) и трехфазных четырехпроводных (3ф4п) систем.

#### Напряжение и ток

- Напряжение между фазой и нейтралью от 60 до 304 в перем. т.
- Напряжение между фазами от 60 до 528 В перем. т.
- Полный коэффициент гармоник (%) напряжения между каждой фазой и нейтралью (не для систем 3ф3п)
- Полный коэффициент гармоник (%) напряжения между фазами (только для 3-фазных систем)
- Полный коэффициент гармоник (%) тока для каждой фазы

### Коэффициент мощности, частота

- Частота в Гц
- Мгновенная мощность:
  - Мощность от 0 до 3600 МВт
  - Реактивная мощность от 0 до 3600 Мвар
  - Полная мощность от 0 до 3600 MBA

#### Измерение энергии

• Принятая/переданная активная энергия

• Принятая/переданная реактивная энергия

• Общая активная энергия

• Общая реактивная энергия

от 0 до 9999999,9 кВт.ч

от 0 до 9999999,9 квар∙ч

от 0 до 9999999,9 кВт∙ч

от 0 до 9999999,9 квар∙ч

#### Измеряемые входы

Входы напряжения через 4-контактный коннектор с возможностью подключения проводов с сечением жил 2,5 мм². Однофазные двухпроводные (1ф2п), однофазные (раздельная фаза) трехпроводные (1ф3п), трехфазные трехпроводные (3ф3п) и трехфазные четырехпроводные (3ф4п) источники энергии, без балансировки.

Частота на линии, измеряемая по напряжению L1 или напряжению L3.

Три входа тока (шесть физических зажимов) с возможностью подключения проводов с сечением жил 2,5 мм<sup>2</sup> для внешних ТТ. Номинальный расчетный ток 5 А или 1 А перем.т. среднекв.



#### Точность

• Напряжение

Ток

• Частота

• Коэффициент мощности

• Активная мощность (Вт)

• Реактивная мощность (вар)

• Полная мощность (ВА)

• Активная энергия (Вт.ч)

• Реактивная энергия (вар.ч.)

• Полный коэффициент гармоник

• Время отклика на ступенчатый входной сигнал

0,5% диапазона (макс.)

0,5% номинала

0,2% средней частоты

1% от единицы (0,01)

±1% максимального диапазона

 $\pm 1\%$  максимального диапазона

±1% максимального диапазона

Класс 1 IEC 62053-21

Класс 2 IEC62053-23

от 1% до 31 гармоники

1 с (стандарт) до >99% окончательных показаний

при 50 Гц.

#### \* Вспомогательный источник питания

Двухконтаткный коннектор с возможностью подключения проводов с жилой сечением 2,5 мм<sup>2</sup>. от 85 до 300 В перем. т. 50/60 Гц или от 120 В до 424 В пост. т. Потребление <10 ВА

### Интерфейсы для внешнего контроля

Имеется три интерфейса:

- канал связи RS485, который можно запрограммировать для протокола Modbus RTU
- импульсный выход, показывающий измеренную энергию в реальном времени (настраивается)
- импульсный выход 3200 имп/кВт·ч (не настраивается)

Конфигурация Modbus (скорость передачи и т. д.) и назначение импульсных выходов (кВт/квар·ч) настраиваются на экранах настройки.

#### Импульсный выход

Счетчик имеет два импульсных выхода. Оба импульсных выхода являются пассивными.

Импульсный выход 1 имеет возможность настройки. Импульсный выход можно настроить на создание импульсов для получения величины общей мощности в кВт·ч или квар·ч

Постоянную импульса можно задать на формирование 1 импульса на:

0,01 = 10 Вт.ч/вар.ч

0,1 = 100 Вт.ч/вар.ч

1 = 1 кВт·ч/квар·ч

10 = 10кВт·ч/квар·ч

100 = 100 кВт.ч/квар.ч

1000=1000 кВт-ч/квар-ч

Ширина импульса: 200/100 (по умолчанию)/60 мс

Импульсный выход 2 не имеет возможность настройки. Выдается общая величина кВт⋅ч.

Постоянная составляет 3200 импульсов/кВт⋅ч.



### Выход RS485 для Modbus RTU

Для Modbus RTU можно настроить следующие параметры связи RS485 при помощи команды Modbus из меню настройки:

Скорость передачи данных 2400, 4800, 9600, 19200, 38400

Четность отсутствует (по умолчанию)/нечетный/четный

**Стоп-биты** 1 или 2

**Адрес сети RS485** *nnn* – 3-значый номер, от 001 до 247

Порядок слов Modbus™ порядок «верхний/нижний бит» автоматически задается на нормальный или обратный. Его нельзя настроить из меню настройки.

### Эталонные условия влияющих величин

Влияющие величины – это переменные, которые в меньшей степени влияют на погрешность измерения. Точность проверяется при номинальной величине (в пределах заданного допуска) этих условий.

• Температура окружающей среды 23°C ±1°C

• Входная частота 50 или 60Hz ±2%

• Входная форма сигнала Синусоидальная (коэффициент искажений <0,005)

Напряжение вспомогательного питания
 Частота вспомогательного питания
 Номинал ±1%
 Номинал ±1%

• Форма сигнала вспомогательного питания Синусоидальная (коэффициент искажений <0,05) (если перем.т.)

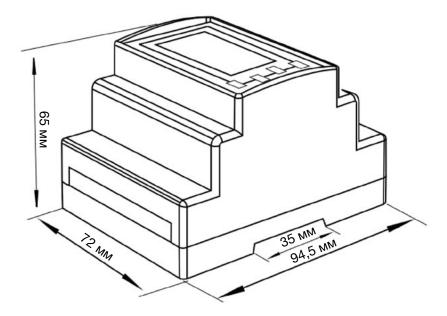
• Магнитное поле внешнего происхождения Магнитный поток земли

#### Окружающая среда

Рабочая температура
 Температура хранения
 от -25°С до +55°С
 от -40°С до +70°С

• Относительная влажность от 0 до 90%, без конденсации

• Класс защиты Передняя панель: IP51, прочее: IP20


ВысотаВремя прогреваДо 2000 м1 минута

• Вибрация от 10 до 50 Гц, IEC 60068-2-6, 2g

• Ударная нагрузка 30g в 3 плоскостях



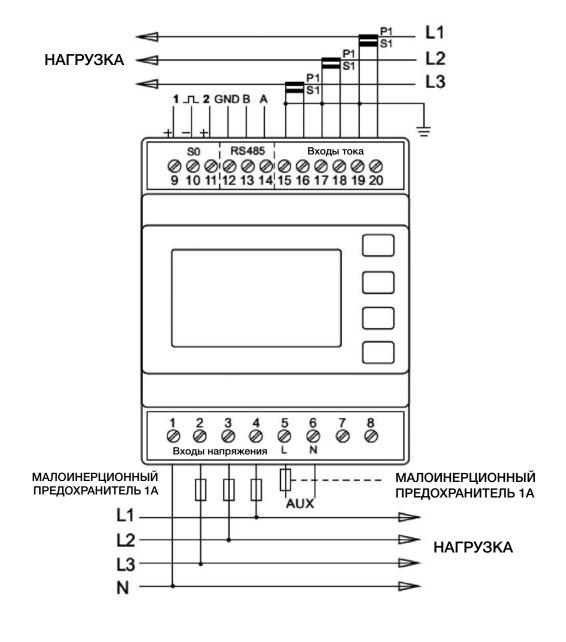
#### Размеры





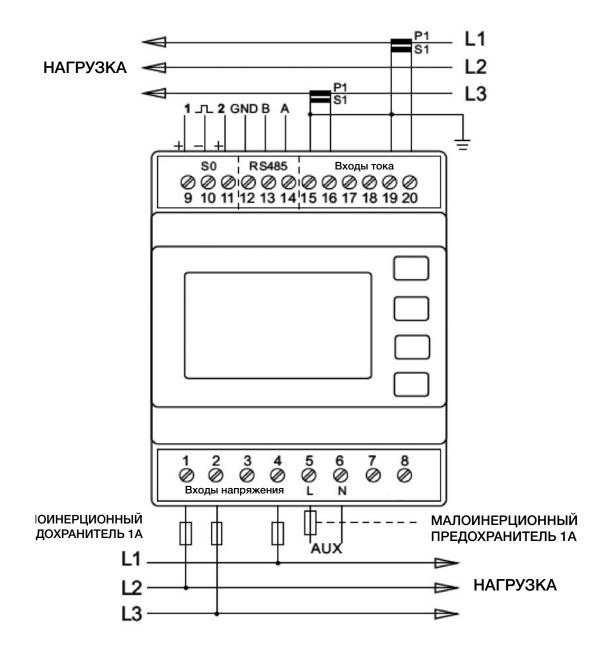
# Предупреждение





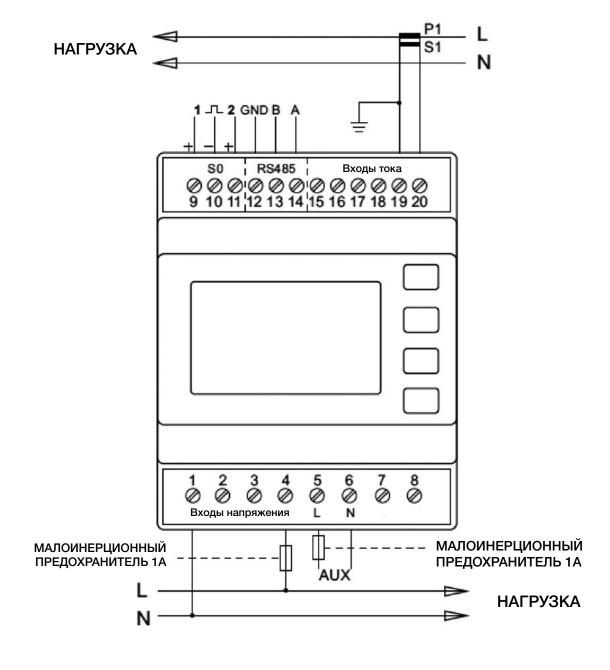

- В ходе нормальной работы на некоторых зажимах счетчика может присутствовать напряжение, опасное для счетчика. К монтажу и обслуживанию допускаются только квалифицированные и обученные специалисты, соблюдающие местные нормы. Перед выполнением подключения и другими работами убедитесь, что все источники питания отключены.
- После установки следует закрыть доступ к зажимам, и способ установки должен обеспечивать защиту от опасностей в случае КЗ.
- Счетчик не должен работать в рамках системы, являющейся единственным средством защиты от короткого замыкания: согласно надлежащей инженерной практике, все важные приборы должны быть защищены по меньшей мере двумя разными средствами защиты.
- Устройство не имеет внутренний предохранитель. Требуется подключить внешний малоинерционный предохранитель 1А/300 В перем. т. В случае отказа или внештатной работы цепи предохранитель сгорает и обеспечивает защиту (подключение изображено на рисунке 1-4).
- Запрещено размыкать цепь вторичной обмотки трансформатора тока под напряжением.
- Трансформатор тока, подключенный к счетчику, должен соответствовать требованиям к двойной изоляции, а второстепенное соединение должно быть заземлено.
- Если счетчик используется в нарушение требований производителя, защита, обеспечиваемая им, может быть нарушена.





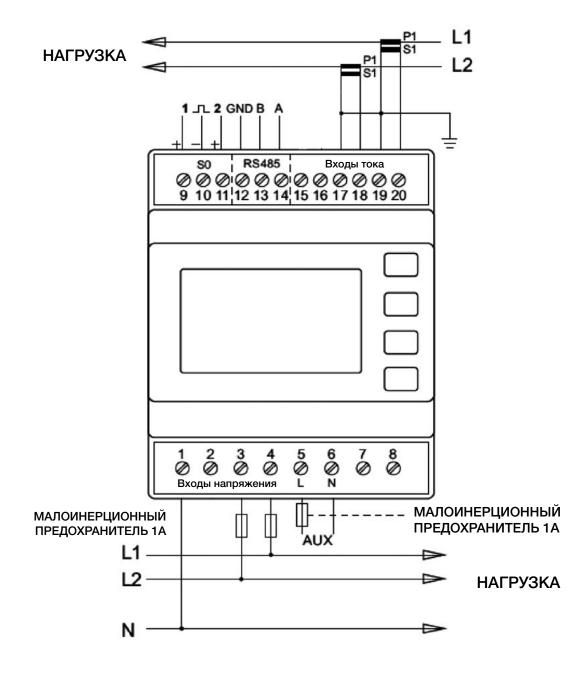

### Три фазы, четыре провода






# Три фазы, три провода






# Одна фаза, два провода





# Одна фаза (раздельная), три провода



При наличии вопросов свяжитесь с нашим отделом продаж.